USER MANUAL

Step-Down Converter

TF6002 Evaluation Kit for

2A, 26V Synchronous Rectified

Features

- 2A, 3.3V output
- Wide input voltage range: 4.5V to 26V
- High full load and light load efficiency
- Compact 1" x 1" reference layout (Full board size is 2" x 1.75")
- Double 0.1" headers for IN, OUT and GND connections
- 25V rated output capacitors for easy transition to higher output voltages
- Test point TP1 for accurate output ripple measurements
- Easily modified for TF6001 or TF6003 evaluation

Description

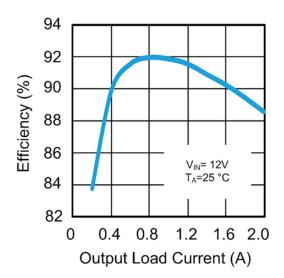
The TF6002EVK is an evaluation board designed for demonstration of all features and performance of the TF6002. The TF6002 is a monolithic synchronous buck regulator featuring integrated 130 m Ω MOSFETs that provide continuous 2A output load current. The board operates over a wide 4.5V to 26V input voltage range while providing 3.3V fixed output voltage with very low output ripple.

The TF6002EVK is a compact 2" x 1.75" double-sided PCB capable of delivering power to the load with low noise and high efficiency. The board features 0.1" headers for easy connection to instrumentation and / or system prototypes. Its compact reference layout may easily be integrated into the prototype layouts.

Ordering Information

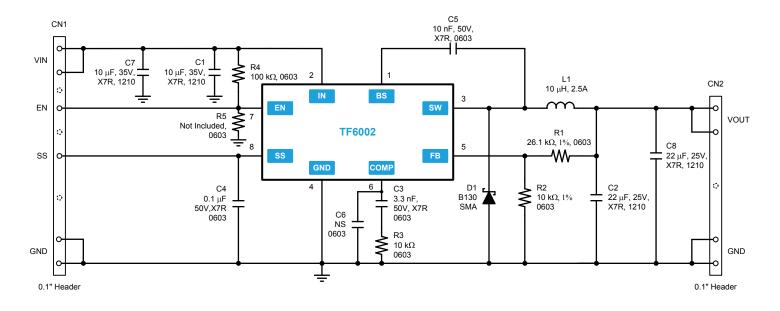
PART NUMBER	MAIN IC (U1) PART NUMBER	
TF6002EVK	TF6002-TAU	

Applications


- High-Density Point-of-Load Regulators
- Distributed Power Systems
- Notebook and Netbook Computers
- Power Supplies for FPGAs, DSP Blocks and ASICs
- Set-Top Boxes
- xDSL Modems

Evaluation Board Photo

www.telefunkensemiconductors.com


Typical Efficiency

Evaluation Board Schematic

2A, 26V Synchronous Rectified Step-Down Converter

Bill of Materials

Qty	Ref	Value	Description	Package	Manufacturer	Part Number
2	CN1		9 position, 6-pin, 0.1" header		Samtec	TSW-109-07-G-S
2	CN2		5 position, 4-pin, 0.1" header		Samtec	TSW-105-07-G-S
1	C1	10 μF	35V, X7R, 20%, ceramic capacitor	1210	Kemet	GMK325AB7106MM-T
1	C2	22 μF	25V, X7R, 10%, ceramic capacitor	1210	Kemet	GRM32ER71E226KE15L
1	C3	3.3 nF	50V, X7R, ceramic capacitor	0603	Kemet	C0603C332K5RACTU
1	C4	0.1 μF	50V, X7R, ceramic capacitor	0603	Murata	GCM188R71H104KA57D
1	C5	10 nF	50V, X7R, ceramic capacitor	0805	AVX	08055C103JAT2A
0	C6	NS	Not installed	0603		
1	C7	10 μF	35V, X7R, 20%,	1210		CCS-1210-106x50-10
1	C8	22 μF	25V, X7R, 10%,	1210		CCS-1210-226x25-10
1	D1		30V, 1A schottky diode	SMA	Diodes	B130-13-F
1	L1	10 µH	2.5A power inductor	8.3 mm x 8.3 mm	Sumida	2.5A, CDRH8D38-100NB
						ALT1: Bourns SRU1038-100Y
						ALT2: TDK VLF10040T-100M3R1
1	R1	26.1 kΩ	0.1W, 1% thick film resistor	0603	Bourns	CR0603-FX-2612ELF
1	R2	10 kΩ	0.1W, 1% thick film resistor	0603	Bourns	CR0603-FX-1002ELF
1	R3	10 kΩ	0.1W, 5% thick film resistor	0603	Vishay	RCS-0603-1002x1-10
1	R4	100 kΩ	0.1W, thick film resistor	0603	Bourns	CR0603-FX-1003ELF
0	R5	NS	Not installed	0603		
1	U1		2A Step Down Converter	SOIC-8(N)	Telefunken	TF6002-TAU

Evaluation Board Layout

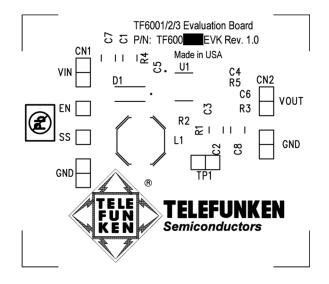


Figure 1. TF6002EVK Top Silkscreen Layer

2A, 26V Synchronous Rectified Step-Down Converter

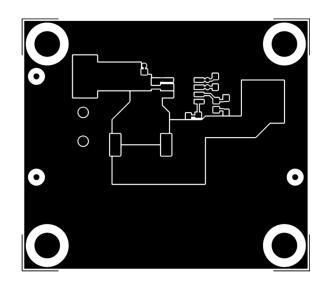


Figure 2. TF6002EVK Top Copper Layer

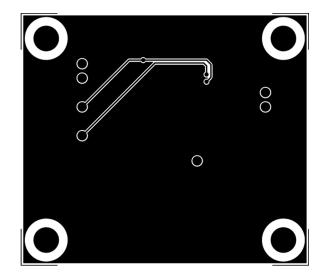


Figure 3. TF6002EVK Bottom Copper Layer

Quick Start Guide

- 1. Connect load terminals to the VOUT and GND pins of CN2 connector on the TF6002EVK. Keep the resistance of the connection medium (e.g. wire) at very low levels to minimize any ohmic losses.
- 2. Connect the VIN and GND pins of CN1 connector on the TF6002EVK to the external power supply. The recommended input voltage is between 4.5V and 26V. Applying a voltage that exceeds the absolute maximum rating of the TF6002 VIN pin (28V) may damage the device. Please note that the absolute maximum voltage rating of the EN pin is 6V.
- 3. Use a voltmeter and / or an oscilloscope with voltage and current probes to check the operation of the TF6002.

TYPICAL PERFORMANCE

Figure 4 shows typical steady state operation waveforms measured with a digital storage oscilloscope and current and voltage probes.

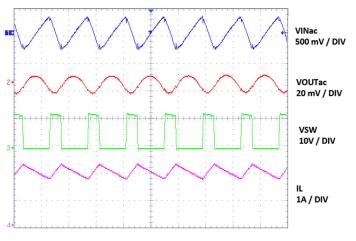


Figure 4. TF6002EVK Typical Operation

The waveforms of Figure 4 represent the TF6002EVK typical steady state operation with the input voltage of 12V and a 2A load.

2A, 26V Synchronous Rectified Step-Down Converter

SETTING THE OUTPUT VOLTAGE

The TF6002EVK output is preset to 3.3V. However, it may easily be adjusted to other common values. By looking at the TF6002EVK schematic, the output voltage depends on the feedback voltage, $V_{\rm FB}$, and the resistor divider network consisting of R1 and R2, as expressed with the following equation:

$$V_{OUT} = V_{FB} \cdot \frac{R_1 + R_2}{R_2}$$

The R2 resistor value may be as high as 100 k Ω , however 10 k Ω resistor value is typically recommended. Given this and the typical V_{FB} of 0.923V, the R1 resistor may easily be calculated for a desired output voltage. Table 1 exemplifies several standard resistor values needed to achieve desired output voltage. If standard resistor values are not available a parallel combination of two standard resistors may also be used.

V _{out} [V]	R1 [k Ω]	R2[k Ω]
1.2	3.0	10
1.8	9.53	10
2.5	16.9	10
3.3	26.1	10
5	44.2	10
12	121	10

Table 1. Examples of Standard Value Resistors for a DesiredOutput Voltage

In addition to updating R1 and R2 for a different output voltage, the compensation network (C3, R3) may also require additional updating. Refer to the TF6002 datasheet for calculating optimal components for the compensation network.

2A, 26V Synchronous Rectified Step-Down Converter

Important Notice

Telefunken Semiconductors PRODUCTS ARE NEITHER DESIGNED NOR INTENDED FOR USE IN MILITARY AND/OR AEROSPACE, AUTOMOTIVE OR MEDICAL DEVICES OR SYSTEMS UNLESS THE SPECIFIC TS PRODUCTS ARE SPECIFICALLY DESIGNATED BY Telefunken Semiconductors FOR SUCH USE. BUYERS ACKNOWLEDGE AND AGREE THAT ANY SUCH USE OF Telefunken Semiconductors PRODUCTS WHICH Telefunken Semiconductors HAS NOT DESIGNATED FOR USE IN MILITARY AND/OR AEROSPACE, AUTOMOTIVE OR MEDICAL DEVICES OR SYSTEMS IS SOLELY AT THE BUYER'S RISK.

Telefunken Semiconductors assumes no liability for application assistance or customer product design. Customers are responsible for their products and applications using Telefunken Semiconductors products.

Resale of Telefunken Semiconductors products or services with statements different from or beyond the parameters stated by Telefunken Semiconductors for that product or service voids all express and any implied warranties for the associated Telefunken Semiconductors product or service. Telefunken Semiconductors is not responsible or liable for any such statements.

©2011 Telefunken Semiconductors. All rights reserved. Information and data in this document are owned by Telefunken Semiconductors and may not be edited, reproduced, or redistributed in any way without written consent from Telefunken Semiconductors.

For additional information please contact support@telefunkensemi.com or visit www.telefunkensemiconductors.com