

High-Side and Low-Side Gate Drivers

TF2101

Features

- Floating high-side driver in bootstrap operation to 600V
- Drives two N-channel MOSFETs or IGBTs in high-side/ low-side configuration
- Outputs tolerant to negative transients
- Wide low-side gate driver and logic supply: 10V to 20V
- Logic inputs CMOS and TTL compatible (down to 3.3V)
- Schmitt triggered logic inputs with internal pull down
- Undervoltage lockout for V_{cc} and V_B
- Space-saving SOIC-8 package
- Extended temperature range:-40degC to +125degC
- Drop-in replacements for IR2101

Applications

DC-DC Converters

Class D Power Amplifiers

AC-DC Inverters

Motor Controls

Description

The TF2101 is a high voltage, high speed gate driver capable of driving N-channel MOSFETs and IGBTs in a high-side/low-side configuration. Telefunken's high voltage process enables the TF2101's high-side to switch to 600V in a bootstrap operation. The 50ns (max) propagation delay matching between the high and the low side drivers allows high frequency switching.

The TF2101 logic inputs are compatible with standard TTL and CMOS levels (down to 3.3V) for easy interfacing with controlling devices. The driver outputs feature high pulse current buffers designed for minimum driver cross conduction.

The low-side gate driver and logic share a common ground to enable a space-saving 8-pin SOIC package and an 8-pin PDIP.

The TF2101 operates over an extended -40°C to +125°C temperature range.

Ordering Information

9				Year Year Week Week
	PART NUMBER	PACKAGE	PACK / Qty	MARK
	TF2101-TAU	SOIC-8(N)	Tube / 95	TF2101 Lot ID
	TF2101-3AS	PDIP-8	Tube / 50	TF2101 Lot ID

Typical Application

TF2101

High Side and Low Side Gate Drivers

Pin Diagrams

Top View: PDIP-8, SOIC-8

TF2101

Pin Descriptions

PIN NAME	PIN DESCRIPTION		
HIN	Logic input for high-side gate driver output (HO), in phase		
LIN	Logic input for low-side gate driver output (LO), in phase		
V _B High-side floating supply			
НО	High-side gate drive output		
V _s	High-side floating supply return		
V _{cc}	Low-side and logic fixed supply		
LO	Low-side gate drive output		
СОМ	Low-side return		

Functional Block Diagram

Absolute Maximum Ratings (NOTE1)

$V_{\rm B}$ - High side floating supply voltage0.3V to +625V $V_{\rm S}$ - High side floating supply offset voltageV_{\rm B}-25V to V_{\rm B}+0.3V V_{\rm HO} - High side floating output voltageV_{\rm S}-0.3V to V_{\rm B}+0.3V dV_{\rm S}/ dt - Offset supply voltage transient
V_{cc} - Low side and logic fixed supply voltage0.3V to +25V V_{LO} - Low side output voltage0.3V to V_{cc} +0.3V V_{IN} - Logic input voltage (HIN and LIN)0.3V to V_{cc} +0.3V
P_{D} - Package power dissipation at $T_{A} \le 25 \text{ °C}$ SOIC-80.625W PDIP-81.0W

NOTE1 Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

High Side and Low Side Gate Drivers

SOIC-8 Thermal Resistance (NOTE2)	
θ _{IC}	45 °C/W
θ _{JA}	200 °C/W
PDIP-8 Thermal Resistance (N0TE2)	
θ _{IC}	35 °C/W
θ _{IA}	125 °C/W
T ₁ - Junction operating temperature	+150 °C
T _L - Lead temperature (soldering, 10s)	+300 °C
T _{sta} - Storage temperature range	-55 °C to +150 °C
ESD Susceptibility	
НВМ <i>(NOTE3)</i>	2 kV
MM (NOTE4)	200V
CDM <i>(NOTE5)</i>	1.5 kV

NOTE2 When mounted on a standard JEDEC 2-layer FR-4 board. **NOTE3** Human Body Model, applicable standard JESD22-A114 **NOTE4** Machine Model, applicable standard JESD22-A115 **NOTE5** Field Induced Charge Device Model, applicable standard JESD22-C101

Recommended Operating Conditions

Symbol	Parameter	MIN	ТҮР	МАХ	Unit
V _B	High side floating supply absolute voltage	V _s + 10		V _s + 20	V
V _s	High side floating supply offset voltage	NOTE6		600	V
V _{HO}	High side floating output voltage	V _s		V _B	V
V _{cc}	Low side and logic fixed supply voltage	10		20	V
VLO	Low side output voltage	0		V _{cc}	V
V _{IN}	Logic input voltage (HIN and LIN)	СОМ		V _{cc}	V
T _A	Ambient temperature	-40		125	°C

NOTE6 Logic operational for $V_s = -5$ to +600V. Logic state held for $V_s = -5V$ to $-V_{BS}$.

High Side and Low Side Gate Drivers

DC Electrical Characteristics (NOTE7)

 $V_{\text{BIAS}}(V_{\text{CC}},V_{\text{BS}}) = 15V, T_{\text{A}} = 25\ ^{\circ}\text{C}$, unless otherwise specified.

Symbol	Parameter	Conditions	MIN	ТҮР	МАХ	Unit
V _{IH}	Logic "1" input voltage	$V_{cc} = 10V$ to 20V	3			V
V _{IL}	Logic "0" input voltage	$V_{cc} = 10V$ to 20V			0.8	V
V _{OH}	High level output voltage, V _{BIAS} - V _O	$I_{o} = 0A$			0.1	V
V _{ol}	Low level output voltage, $V_{\rm o}$	$I_{o} = 0A$			0.1	V
I _{LK}	Offset supply leakage current	VB = VS = 600V			50	μA
I _{BSQ}	Quiescent V _{BS} supply current	$V_{IN} = 0V \text{ or } 5V$		30	55	μA
I _{ccq}	Quiescent V _{cc} supply current	$V_{IN} = 0V \text{ or } 5V$		150	270	μA
I _{IN+}	Logic "1" input bias current	V _{IN} = 5V		3	10	μA
I _{IN-}	Logic "0" input bias current	$V_{IN} = 0V$			1	μA
V _{CCUV+}	V _{cc} supply under-voltage positive going threshold		8	8.9	9.8	V
V _{ccuv-}	V _{cc} supply under-voltage negative going threshold		7.4	8.2	9	V
I _{O+}	Output high short circuit pulsed current	$V_{o} = 0V, V_{IN} = Logic "1",$ PW $\leq 10 \ \mu s$	130	210		mA
I _{O-}	Output low short circuit pulsed current	$V_{o} = 15V, V_{IN} = Logic "0",$ PW $\leq 10 \ \mu s$	270	360		mA

AC Electrical Characteristics

 $V_{BIAS}(V_{CC}, V_{BS}) = 15V, T_A = 25 \text{ °C}, \text{ and } C_L = 1000 \text{pF}, \text{ unless otherwise specified.}$

Symbol	Parameter	Conditions	MIN	ТҮР	МАХ	Unit
t _{on}	Turn-on propagation delay	$V_s = 0V$		160	220	ns
t _{off}	Turn-off propagation delay	$V_{s} = 600V$		150	220	ns
t _r	Turn-on rise time			100	170	ns
t _f	Turn-off fall time			50	90	ns
t _{DM}	Delay matching				50	ns

NOTE7 The V_{IN}, V_{TH} and I_{IN} parameters are referenced to COM. The V₀ and I₀ parameters are referenced to COM and are applicable to the respective output pins: HO and LO.

Timing Waveforms

TF2101

High Side and Low Side Gate Drivers

Figure 1. Input / Output Timing Diagram

Figure 2. Switching Time Waveform Definitions

Figure 3. Delay Matching Waveform Definitions

High Side and Low Side Gate Drivers

Package Dimensions (SOIC-8 N)

Please contact support@telefunkensemi.com for package availability.

C 8x 0.35-0.51 C 0.251.010 C AS BS

NOTES: UNLESS OTHERWISE SPECIFIED

1. REFERENCE JEDEC REGISTRATION MS-012, VARIATION AA.

CONTROLLING DIMENSION IS MILLIMETER VALUES IN [] ARE INCHES DIMENSIONS IN () FOR REFERENCE ONLY

TF2101

High Side and Low Side Gate Drivers

Package Dimensions (PDIP-8)

Notes

High Side and Low Side Gate Drivers

Important Notice

Telefunken Semiconductors PRODUCTS ARE NEITHER DESIGNED NOR INTENDED FOR USE IN MILITARY AND/OR AEROSPACE, AUTOMOTIVE OR MEDICAL DEVICES OR SYSTEMS UNLESS THE SPECIFIC Telefunken Semiconductors PRODUCTS ARE SPECIFICALLY DESIGNATED BY Telefunken Semiconductors FOR SUCH USE. BUYERS ACKNOWLEDGE AND AGREE THAT ANY SUCH USE OF Telefunken Semiconductors PRODUCTS WHICH Telefunken Semiconductors HAS NOT DESIGNATED FOR USE IN MILITARY AND/OR AEROSPACE, AUTOMOTIVE OR MEDICAL DEVICES OR SYSTEMS IS SOLELY AT THE BUYER'S RISK.

Telefunken Semiconductors assumes no liability for application assistance or customer product design. Customers are responsible for their products and applications using Telefunken Semiconductors products.

Resale of Telefunken Semiconductors products or services with statements different from or beyond the parameters stated by Telefunken Semiconductors for that product or service voids all express and any implied warranties for the associated Telefunken Semiconductors product or service. Telefunken Semiconductors is not responsible or liable for any such statements.

©2012 Telefunken Semiconductors. All rights reserved. Information and data in this document are owned by Telefunken Semiconductors and may not be edited, reproduced, or redistributed in any way without written consent from Telefunken Semiconductors.

For additional information please contact support@telefunkensemi.com or visit www.telefunkensemiconductors.com