TELEFUNKEN
Semiconductors

Features

■ DC to 1.5 Gbps low jitter, low skew, low power operation
Pin configurable, fully differential, non-blocking architecture eases system design and PCB layout

■ On-chip 100Ω input termination minimizes return loss, component count and board space (TF10CP02 only)

- Splitter, mux, repeater or crosspoint

Receivers with wide input voltage range allow easy AC or DC coupled interface to most differential drivers (LVDS, LVPECL, CML)

- Point to point applications

■ Guaranteed operation within industrial temperature range -40° to $+85^{\circ} \mathrm{C}$

- Available in space saving SOIC-16 package
- Pin and function compatable with DS90CP22 and SN6SLVCP22

Applications

- High-Speed Backplane Redundancy
- Wireless Base Stations

■ Telecom / Datacom

- Network Routing

Ordering Information

Year Year WeekWeek			
PART NUMBER	PACKAGE	PACK / Qty	MARK
TF10CP02-TBS	SOIC-16(N)	Tube / 48	〈r) YYWW TF10CP02TB Lot ID
TF10CP02-TBP		T\&R / 500	
TF10CP22-TBS	SOIC-16(N)	Tube / 48	<re)YYWW TF10CP22TB Lot ID
TF10CP22-TBP		T\&R / 500	
TF10CP02-6CX	TSSOP-16	Check for Availabilty	(r) YYWW TF10CP026C Lot ID
TF10CP22-6CX	TSSOP-16	Check for Availabilty	(r) YYWW TF10CP226C Lot ID

Replace X with U (0ty $=94$) or $\mathrm{G}(0 t y=100)$.
TF10CP02 is Terminated. TF10CP22 is Not Terminated.
www.telefunkensemiconductors.com

1.5 Gbps 2×2 LVDS Crosspoint Switches

Description

The TF10CP02 and TF10CP22 are low-jitter, fully differential, nonblocking LVDS 2×2 crosspoint switches ideal for applications that require high-speed data or clock distribution, switching, buffering, muxing or routing while minimizing power, space, and noise.

Low 100 ps (max) channel-channel skew and 80 ps P-P (max) added deterministic jitter ensure reliable communication in high-speed links that are highly sensitive to timing error, especially those incorporating clock-and-data recovery or serializers and deserializers.
The TF10CP02 features on-chip 100Ω input termination which minimizes input return loss, component count and board space. The TF10CP22 differential inputs are without input termination resistors and are suitable for applications requiring custom termination schemes.
Supply current is 70 mA (max). LVDS inputs and outputs conform to the ANSI/EIA/TIA-644-A standard. The TF10CP02 and TF10CP22 are offered in 16-pin SOIC narrow and TSSOP packages, and operate over an extended $-40{ }^{\circ} \mathrm{C}$ to $+85{ }^{\circ} \mathrm{C}$ temperature range.

SOIC-16(N)

TSSOP-16

Function Diagram

Pin Diagram

Logic Tables

S1	S0	OUT1	OUT0
0	0	IN0	IN0
0	1	IN0	IN1
1	0	IN1	IN0
1	1	IN1	IN1

Table 1. Switch Configuration Truth Table

OE1	OEO	OUT1	OUT0
0	0	Disabled	Disabled
0	1	Disabled	Enabled
1	0	Enabled	Disabled
1	1	Enabled	Enabled

Table 2. Output Enable Truth Table
NOTE Asserting the OE pin will force zero Volts differential on the disabled output. In the event that downstream devices require a floating output, then $A C$ coupling the outputs is recommended.

Pin Descriptions

PIN NAME	PIN NUMBER	PIN TYPE	PIN DESCRIPTION
IN0+, IN0-,	3,4,	LVDS inputs	Non-inverting and inverting LVDS input pins.
IN1+, IN1-	6,7		
OUT0+, OUT0-,	14,13,	LVDS outputs	Non-inverting and inverting LVDS output pins.
OUT1+, OUT1-	11,10		
OE0, OE1	16,15	LVCMOS inputs	Output enable pins.
S0, S1	2,1	LVCMOS inputs	Switch configuration pins.
VCC	5	Power	Power supply pin.
GND	12	Power	Ground or circuit common pin.
NC	8,9	NC	"No connect" pins.

TF10CP02 / TF10CP22

Absolute Maximum Ratings ${ }^{1}$

Outputs

OUT+, OUT- to GND \qquad -0.5 V to +4 V

Maximum Package Power Dissipation ($\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$)
SOIC-16 (derate $13.8 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $+25^{\circ} \mathrm{C}$)............................ 1.7 W
TSSOP-16 (derate $9.7 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $+25^{\circ} \mathrm{C}$)
.1.2W

1 Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.
SOIC-16 Thermal Resistance

$\theta_{\text {Jc.. } 41^{\circ} \mathrm{C} / \mathrm{W}}$

Storage Temperature Range $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Maximum Junction Temperature ... $150^{\circ} \mathrm{C}$
Lead Temperature (soldering, 4s) .. $+260^{\circ} \mathrm{C}$
ESD Susceptibility
HBM¹... 5 kV
MM ${ }^{2}$..250V
CDM ${ }^{3}$... 1250 V

1 Human Body Model, applicable standard JESD22-A114-C
2 Machine Model, applicable standard JESD22-A115-A
3 Field Induced Charge Device Model, applicable standard JESD22-C101-C

Recommended Operating Conditions

Symbol	Parameter	Pins	MIN	TYP	MAX	Unit
V_{CC}	Supply Voltage	VCC	3	3.3	3.6	V
$\mathrm{~V}_{\text {ID }}$	Differential input voltage	$\mathrm{IN}+, \mathrm{IN}-$	0.1	0.35	1	V
$\mathrm{~V}_{\mathrm{IN}}$	Input voltage	$\mathrm{IN}+, \mathrm{IN}-$	0		$\mathrm{~V}_{\mathrm{CC}}$	V
V_{IH}	High-level input voltage	OE, S	2		$\mathrm{~V}_{\mathrm{CC}}$	V
V_{IL}	Low-level input voltage	OE, S	0		0.8	V
$\mathrm{~T}_{\mathrm{A}}$	Operating free-air temperature	All	-40	25	85	${ }^{\circ} \mathrm{C}$

Electrical Characteristics

Over recommended operating conditions (NOTE1), unless otherwise specified. Typical values are $\mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.

Symbol	Parameter	Conditions	MIN	TYP	MAX	Unit
LVCMOS Specifications (OE, S pins)						
V_{IH}	High-level input voltage		2.0		$\mathrm{V}_{\text {cc }}$	V
$\mathrm{V}_{\text {IL }}$	Low-level input voltage		GND		0.8	V
$\mathrm{I}_{\mathrm{H}} \mathrm{S}$	High-level input current	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=3.6 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{IN}}=3.6 \mathrm{~V} \end{aligned}$	50	150	225	$\mu \mathrm{A}$
$\mathrm{I}_{\mathrm{IH}} \mathrm{OE}$	High-level input current		100	285	450	$\mu \mathrm{A}$
I_{11}	Low-level input current	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=3.6 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{IN}}=0 \mathrm{~V} \end{aligned}$	-10	0	10	$\mu \mathrm{A}$
V_{CL}	Input clamp voltage (Note 2)	$\mathrm{I}_{\mathrm{CL}}=-18 \mathrm{~mA}, \mathrm{~V}_{\mathrm{cc}}=0 \mathrm{~V}$	-1.5	-0.9		V
LVDS Input Specifications (IN+, IN- pins)						
$\mathrm{V}_{\text {TH }}$	Differential input high threshold	$\mathrm{V}_{\text {ICM }}=0.05 \mathrm{~V}$ or $\mathrm{V}_{\text {cc }}-0.05 \mathrm{~V}$		0	100	mV
$\mathrm{V}_{\text {TL }}$	Differential input low threshold		-100	0		mV
$\mathrm{V}_{\text {ID }}$	Differential input voltage		0.1	0.35	1	V
$V_{\text {ICMR }}$	Input common mode voltage range	$\mathrm{V}_{1 \mathrm{D}}=100 \mathrm{mV}$	0.05		$\mathrm{V}_{\text {cc }}-0.05$	V
I_{IN}	Input current CP22 (Note 3)	$\begin{aligned} & \mathrm{V}_{\mathrm{cC}}=3.6 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{IN}}=0 \text { or } 3.6 \mathrm{~V} \\ & \hline \end{aligned}$	-10	+/- 6	10	$\mu \mathrm{A}$
	Input current CP02 (Note 3)	$\begin{aligned} & \mathrm{V}_{\mathrm{cc}}=3.6 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{IN}}=0 \text { or } 3.6 \mathrm{~V} \end{aligned}$	-20	+/-12	20	$\mu \mathrm{A}$
$\mathrm{C}_{\text {IN }}$	Input capacitance	IN+ or IN- to GND		5		pF
$\mathrm{R}_{\text {IN }}$	Input termination resistor (TF10CP02 only)	Between IN+ and IN-		100		Ω

NOTE1 Current into device pin is defined as positive. Current out of the device is defined as negative. All voltages are referenced to ground, unless otherwise specified. NOTE2 This specification is not production tested and is guaranteed by design simulations.
NOTE3 Other input floating or observing the Absolute Maximum Differential input voltage.

Electrical Characteristics (continued)

Over recommended operating conditions (NOTE1), unless otherwise specified. Typical values are $\mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.

LVDS Output Specifications (OUT+, OUT- pins)						
$\left\|\mathrm{V}_{\text {od }}\right\|$	Differential output voltage magnitude	See Figure 1$\mathrm{R}_{\mathrm{L}}=100 \Omega$	250	370	475	mV
$\left\|\Delta \mathrm{V}_{\text {OD }}\right\|$	Change in magnitude of $\mathrm{V}_{\text {OD }}$ for complimentary output states		-35		35	mV
$\mathrm{V}_{\text {OCM(ss) }}$	Steady-state output common mode voltage		1.05	1.35	1.55	mV
$\Delta \mathrm{V}_{\text {OCM (SS) }}$	Change in magnitude of $\mathrm{V}_{\text {OCM(ss) }}$ for complimentary output states		-35		35	mV
$\mathrm{I}_{\text {os }}$	Output short circuit current	OUT+ or OUT- to GND		-70	-100	mA
		OUT+ or OUT- to $\mathrm{V}_{\text {cc }}$		5	10	
$\mathrm{I}_{\text {OSD }}$	Differential output short circuit current	OUT+ and OUT- to GND		-115	-200	mA
		OUT+ and OUT- to $\mathrm{V}_{\text {cc }}$		9	20	
$\mathrm{C}_{\text {OUT }}$	Output capacitance	OUT+ or OUT- to GND		3.3		pF
Power Supply Current Specifications						
$\mathrm{I}_{\text {cc }}$	Power supply current	$\mathrm{OE}=1, \mathrm{~S} 1=0, \mathrm{~S} 2=1$		50	70	mA

Switching Characteristics

Over recommended operating conditions (NOTE1), unless otherwise specified. Typical values are $\mathrm{V}_{\mathrm{Cc}}=3.3 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.

Symbol	Parameter	Conditions	MIN	TYP	MAX	Unit
LVDS AC Specifications (NOTE2)						
$\mathrm{t}_{\text {PLH }}$	Propagation delay, low-to-high	See Figures 2, 3$\mathrm{R}_{\mathrm{L}}=100 \Omega$	300	470	750	ps
$\mathrm{t}_{\text {PHL }}$	Propagation delay, high-to-low		300	470	750	ps
t_{r}	Rise time		100	175	400	ps
t_{f}	Fall time		100	175	400	ps
$\mathrm{t}_{\text {SK(p) }}$	Pulse skew (NOTE3)			10	75	ps
$\mathrm{t}_{\text {SK(c-c) }}$	Channel-to-channel skew (NOTE4)			12	100	ps
$\mathrm{t}_{\text {SK(p-p) }}$	Part-to-part skew (NOTE5)				450	ps
$\mathrm{t}_{\text {ON }}$	Propagation delay, OE to On	See Figures 4		8.5	15	ns
$\mathrm{t}_{\text {OFF }}$	Propagation delay, OE to Off			6.5	15	ns
$\mathrm{t}_{\text {seL }}$	Select time (NOTE6)			9	20	ns
T_{DJ}	Deterministic Jitter Peak-to-Peak	$\begin{aligned} & \mathrm{V}_{\mathrm{ID}}=400 \mathrm{mV} \\ & \mathrm{~V}_{\mathrm{CM}}=1.2 \mathrm{~V} \\ & \text { PRBS-7 (NRZ) } \end{aligned}$	622 Mbps	20	70	ps
			1.06 Gbps	20	70	ps
			1.5 Gbps	30	80	ps

NOTE1 Current into device pin is defined as positive. Current out of the device is defined as negative. All voltages are referenced to ground, unless otherwise specified.
NOTE2 Specification is guaranteed by characterization and is not tested in production.
NOTE3 $t_{\text {SK(p) }}$ pulse skew, is the magnitude difference in propagation delay time between the positive going edge and the negative going edge of the same channel $\left(t_{\text {SK(p) }}=\left|t_{\text {PIH }}-t_{\text {PHL }}\right|\right)$.
NOTE4 $t_{\text {SK(-c) }}$, channel-to-channel skew, is the difference in propagation delay time ($\left(t_{P L H}\right.$ or $t_{\text {PHI }}$) between both output channels in broadcast mode on the same device at any operating temperature and supply voltage within the recommended operating range.
NOTE5 $t_{\text {SK(p-p) }}$ part-to-part skew, is defined as the difference between the minimum and maximum differential propagation delay times. It applies to devices operating at the same power supply voltage and within $5^{\circ} \mathrm{C}$ of each other within the operating temperature range.
NOTE6 The state of the outputs is not valid for the duration of the $\mathrm{t}_{\text {SLL }}$ maximum propagation delay time.

Test Circuits and Timing Diagrams

Figure 2. Propagation Delay and Transition Time Test Setup

Figure 3. Propagation Delay and Transition Time Waveforms

Test Circuits and Timing Diagrams (continued)

Figure 4. $\mathrm{t}_{\mathrm{oN}} / \mathrm{t}_{\text {off }}$ Delay Waveforms

Typical Performance Characteristics

$\mathrm{H}=250 \mathrm{ps} /$ DIV

$$
\mathrm{V}=80 \mathrm{mV} / \mathrm{DIV}
$$

1.06 Gbps NRZ PRBS-7, after $4^{\prime \prime}$ of FR-4 stripline, $+25^{\circ} \mathrm{C}, 3.3 \mathrm{~V}$ Vcc.

NOTES :

1. LEAD CDPLANARITY SHDULD BE 0 TD 0.10 MM (.004*) MAX.
2. PACKAGE SURFACE FINISHING : (2.1) TロP : MATTE (CHARMILLES \#18~30).
3. ALL DIMENSIONS EXCLUDING MZLD FLASHES AND END FLASH FRDM THE PACKAGE BLDY SHALL NDT EXCEED 0.25MM (.010*) PER SIDE(D).
© DETAIL CF PIN \#1 IDENTIFIER ARE GPTIONAL BUT MUST be lacated within the zane indicated.

Package Dimensions (TSSOP-16 Please contact support@telekenfunsemi.com for availability)

	0.65 mm LEAD PITCH			$\begin{aligned} & \mathrm{N} \\ & \mathrm{O} \\ & \mathrm{~T} \\ & \mathrm{E} \end{aligned}$
	MIN	NOM	MAX	
A	---	---	1.10	---
A1	0.05	---	0.15	---
A2	0.85	0.90	0.95	---
L	0.50	0.60	0.75	---
R	0.09	---	---	---
R1	0.09	---	---	--
b	0.19	---	0.30	5
b1	0.19	0.22	0.25	---
c	0.09	---	0.20	---
c1	0.09	---	0.16	---
$\theta 1$	$0{ }^{\circ}$	---	$8{ }^{\circ}$	---
L1	1.0 REF			---
$a a a$	0.10			--
$b b b$	0.10			---
ccc	0.05			---
ddd	0.20			---
e	0.65 BSC			---
$\theta 2$	12^{*} REF			---
$\theta 3$	12* REF			---
NOTE		1,2		
D	4.90	5.00	5.10	
E1	4.30	4.40	4.50	
E	6.4 BSC			
e	0.65 BSC			
N	16			

NOTES:
1 ALL DIMENSIONS ARE IN MILLIMETERS (ANGLES IN DEGREES).
2 DIMENSIONING AND TOLERANCING PER ASME Y14.5M-1994.
3 DIMENSION 'D' DOES NOT INCLUDE MOLD FLASH, PROTRUSIONS OR GATE BURRS. MOLD FLASH, PROTRUSIONS OR GATE BURRS SHALL NOT EXCEED 0.15 PER SIDE.

4 DIMENSION 'E1' DOES NOT INCLUDE INTERLEAD FLASH OR PROTRUSION. INTERLEAD FLASH OR PROTRUSION SHALL NOT EXCEED 0.25 PER SIDE.

DIMENSION ' b ' DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE DAMBAR
PROTRUSION SHALL BE 0.08 MM TOTAL IN EXCESS OF THE ' b ' DIMENSION AT MAXIMUM MATERIAL CONDITION. DAMBAR CANNOT BE LOCATED ON THE LOWER RADIUS OF THE FOOT. MINIMUM SPACE BETWEEN PROTRUSION AND ADJACENT LEAD IS 0.07 MM FOR 0.5 MM PITCH PACKAGES.

6 TERMINAL NUMBERS ARE SHOWN FOR REFERENCE ONLY.
4 DATUMS $-\mathrm{A}-$ AND $-\mathrm{B}-$ TO BE DETERMINED AT DATUM PLANE -H-
8 DIMENSIONS 'D' AND 'E1' ARE TO BE DETERMINED AT DATUM PLANE -H-.
9. THIS DIMENSION APPLIES ONLY TO VARIATIONS WITH AN EVEN NUMBER OF LEADS PER SIDE. FOR VARIATION WITH AN ODD NUMBER OF LEADS PER SIDE, THE "CENTER" LEAD MUST BE COINCIDENT WITH THE PACKAGE CENTERLINE, DATUM A.
10 CROSS SECTION A-A TO BE DETERMINED AT 0.10 TO 0.25 MM FROM THE LEADTIP.

11 THIS VARIATION IS NOT REGISTERED WITH JEDEC.
12 PACKAGE SURFACE FINISHING:
(I) TOP: MATTE (CHARMILLES: \#18~30)
(II) BOTTOM: MATTE (CHARMILLES: \#12~27)

Important Notice

Telefunken Semiconductors PRODUCTS ARE NEITHER DESIGNED NOR INTENDED FOR USE IN MILITARY AND/OR AEROSPACE, AUTOMOTIVE OR MEDICAL DEVICES OR SYSTEMS UNLESS THE SPECIFIC TS PRODUCTS ARE SPECIFICALLY DESIGNATED BY Telefunken Semiconductors FOR SUCH USE. BUYERS ACKNOWLEDGE AND AGREE THAT ANY SUCH USE OF Telefunken Semiconductors PRODUCTS WHICH Telefunken Semiconductors HAS NOT DESIGNATED FOR USE IN MILITARY AND/OR AEROSPACE, AUTOMOTIVE OR MEDICAL DEVICES OR SYSTEMS IS SOLELY AT THE BUYER'S RISK.

Telefunken Semiconductors assumes no liability for application assistance or customer product design. Customers are responsible for their products and applications using Telefunken Semiconductors products.

Resale of Telefunken Semiconductors products or services with statements different from or beyond the parameters stated by Telefunken Semiconductors for that product or service voids all express and any implied warranties for the associated Telefunken Semiconductors product or service. Telefunken Semiconductors is not responsible or liable for any such statements.
©2011 Telefunken Semiconductors. All rights reserved. Information and data in this document are owned by Telefunken Semiconductors and may not be edited, reproduced, or redistributed in any way without written consent from Telefunken Semiconductors.

For additional information please contact support@telefunkensemi.com or visit www.telefunkensemiconductors.com

