

### 1.5 Gbps 2x2 LVDS Crosspoint Switches

#### **Features**

- DC to 1.5 Gbps low jitter, low skew, low power operation
- Pin configurable, fully differential, non-blocking architecture eases system design and PCB layout
- On-chip 100Ω input termination minimizes return loss, component count and board space (TF10CP02 only)
- Splitter, mux, repeater or crosspoint
- Receivers with wide input voltage range allow easy AC or DC coupled interface to most differential drivers (LVDS, LVPECL, CML)
- Point to point applications
- Guaranteed operation within industrial temperature range -40° to +85°C
- Available in space saving SOIC-16 package
- Pin and function compatable with DS90CP22 and SN6SLVCP22

### **Applications**

- High-Speed Backplane Redundancy
- Wireless Base Stations
- Telecom / Datacom
- Network Routing

### **Ordering Information**

|              |             | Ye                       | ar Year Week Week                |
|--------------|-------------|--------------------------|----------------------------------|
| PART NUMBER  | PACKAGE     | PACK / Qty               | MARK                             |
| TF10CP02-TBS |             | Tube / 48                |                                  |
| TF10CP02-TBP | SOIC-16(N)  | T&R / 500                | TF10CP02TB<br>Lot ID             |
| TF10CP22-TBS | SOIC-16(N)  | Tube / 48                |                                  |
| TF10CP22-TBP | 30IC-10(IN) | T&R / 500                | TF10CP22TB<br>Lot ID             |
| TF10CP02-6CX | TSSOP-16    | Check for<br>Availabilty | TF) YYWW<br>TF10CP026C<br>Lot ID |
| TF10CP22-6CX | TSSOP-16    | Check for<br>Availabilty | TF) YYWW<br>TF10CP226C<br>Lot ID |

**Replace** X with U (Qty = 94) or G (Qty = 100).

TF10CP02 is Terminated. TF10CP22 is **Not** Terminated.

www.telefunkensemiconductors.com

#### Description

The TF10CP02 and TF10CP22 are low-jitter, fully differential, nonblocking LVDS 2x2 crosspoint switches ideal for applications that require high-speed data or clock distribution, switching, buffering, muxing or routing while minimizing power, space, and noise.

Low 100 ps (max) channel-channel skew and 80 ps P-P (max) added deterministic jitter ensure reliable communication in high-speed links that are highly sensitive to timing error, especially those incorporating clock-and-data recovery or serializers and deserializers.

The TF10CP02 features on-chip  $100\Omega$  input termination which minimizes input return loss, component count and board space. The TF10CP22 differential inputs are without input termination resistors and are suitable for applications requiring custom termination schemes.

Supply current is 70 mA (max). LVDS inputs and outputs conform to the ANSI/EIA/TIA-644-A standard. The TF10CP02 and TF10CP22 are offered in 16-pin SOIC narrow and TSSOP packages, and operate over an extended -40  $^{\circ}$ C to +85  $^{\circ}$ C temperature range.



#### **Function Diagram**

147 . 147









### **Pin Diagram**



### **Logic Tables**

| <b>S</b> 1 | <b>S</b> 0 | OUT1 | OUT0 |
|------------|------------|------|------|
| 0          | 0          | IN0  | IN0  |
| 0          | 1          | IN0  | IN1  |
| 1          | 0          | IN1  | IN0  |
| 1          | 1          | IN1  | IN1  |

Table 1. Switch Configuration Truth Table

| OE1 | OE0 | OUT1     | OUT0     |
|-----|-----|----------|----------|
| 0   | 0   | Disabled | Disabled |
| 0   | 1   | Disabled | Enabled  |
| 1   | 0   | Enabled  | Disabled |
| 1   | 1   | Enabled  | Enabled  |

Table 2. Output Enable Truth Table

**NOTE** Asserting the OE pin will force zero Volts differential on the disabled output. In the event that downstream devices require a floating output, then AC coupling the outputs is recommended.

| PIN NAME                      | PIN NUMBER        | ΡΙΝ ΤΥΡΕ      | PIN DESCRIPTION                               |
|-------------------------------|-------------------|---------------|-----------------------------------------------|
| IN0+, IN0-,<br>IN1+, IN1-     | 3, 4,<br>6, 7     | LVDS inputs   | Non-inverting and inverting LVDS input pins.  |
| OUT0+, OUT0-,<br>OUT1+, OUT1- | 14, 13,<br>11, 10 | LVDS outputs  | Non-inverting and inverting LVDS output pins. |
| OE0, OE1                      | 16, 15            | LVCMOS inputs | Output enable pins.                           |
| S0, S1                        | 2, 1              | LVCMOS inputs | Switch configuration pins.                    |
| VCC                           | 5                 | Power         | Power supply pin.                             |
| GND                           | 12                | Power         | Ground or circuit common pin.                 |
| NC                            | 8,9               | NC            | "No connect" pins.                            |

#### **Pin Descriptions**



### **Absolute Maximum Ratings<sup>1</sup>**

| VCC to GND0.5V to +4V                                                                       | SOIC-16 Thermal Resistance                            |
|---------------------------------------------------------------------------------------------|-------------------------------------------------------|
|                                                                                             | θ <sub>JC</sub> 41 °C/W                               |
| Inputs                                                                                      | θ <sub>JC</sub> 41 °C/W<br>θ <sub>JA</sub> 72 °C/W    |
| IN+, IN- to GND0.5V to +4V                                                                  |                                                       |
| OE, S to GND0.5V to +4V                                                                     | TSSOP-16 Thermal Resistance                           |
| V <sub>ID</sub> Differential input voltage1.2V                                              | θ <sub>JC</sub> 29 °C/W<br>θ <sub>JA</sub> 103 °C/W   |
| J                                                                                           | θ <sub>JA</sub> 103 °C/W                              |
| Outputs                                                                                     |                                                       |
| OUT+, OUT- to GND0.5V to +4V                                                                | Storage Temperature Range                             |
|                                                                                             | Maximum Junction Temperature+150°C                    |
|                                                                                             | Lead Temperature (soldering, 4s)+260°C                |
| Maximum Package Power Dissipation ( $T_A = +25 \text{ °C}$ )                                |                                                       |
|                                                                                             | ESD Susceptibility                                    |
| SOIC-16 (derate 13.8 mW/°C above +25 °C)1.7 W                                               | HBM <sup>1</sup> 5 kV                                 |
| TSSOP-16 (derate 9.7 mW/°C above +25 °C)1.2W                                                | MM <sup>2</sup>                                       |
|                                                                                             | CDM <sup>3</sup> 1250V                                |
|                                                                                             |                                                       |
| 1 Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent         | 1 Human Body Model, applicable standard JESD22-A114-C |
| damage to the device. These are stress ratings only, and functional operation of the device | 2 Machine Model, applicable standard JESD22-A115-A    |
|                                                                                             |                                                       |

at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for

extended periods may affect device reliability.

3 Field Induced Charge Device Model, applicable standard JESD22-C101-C

### **Recommended Operating Conditions**

| Symbol          | Parameter                      | Pins     | MIN | ТҮР  | MAX             | Unit |
|-----------------|--------------------------------|----------|-----|------|-----------------|------|
| V <sub>cc</sub> | Supply Voltage                 | VCC      | 3   | 3.3  | 3.6             | V    |
| V <sub>ID</sub> | Differential input voltage     | IN+, IN- | 0.1 | 0.35 | 1               | V    |
| V <sub>IN</sub> | Input voltage                  | IN+, IN- | 0   |      | V <sub>cc</sub> | V    |
| V <sub>IH</sub> | High-level input voltage       | OE, S    | 2   |      | V <sub>cc</sub> | V    |
| V <sub>IL</sub> | Low-level input voltage        | OE, S    | 0   |      | 0.8             | V    |
| T <sub>A</sub>  | Operating free-air temperature | All      | -40 | 25   | 85              | °C   |





### **Electrical Characteristics**

| Symbol             | Parameter                                     | Conditions                                       | MIN  | ТҮР   | MAX                    | Unit |
|--------------------|-----------------------------------------------|--------------------------------------------------|------|-------|------------------------|------|
| LVCMOS Sp          | ecifications (OE, S pins)                     |                                                  |      |       |                        |      |
| V <sub>IH</sub>    | High-level input voltage                      |                                                  | 2.0  |       | V <sub>cc</sub>        | V    |
| V <sub>IL</sub>    | Low-level input voltage                       |                                                  | GND  |       | 0.8                    | V    |
| I <sub>IH</sub> S  | High-level input current                      | $V_{cc} = 3.6V$                                  | 50   | 150   | 225                    | μΑ   |
| I <sub>IH</sub> OE | High-level input current                      | V <sub>IN</sub> = 3.6V                           | 100  | 285   | 450                    | μΑ   |
| I <sub>IL</sub>    | Low-level input current                       | $V_{cc} = 3.6V$<br>$V_{IN} = 0V$                 | -10  | 0     | 10                     | μΑ   |
| V <sub>CL</sub>    | Input clamp voltage (Note 2)                  | $I_{CL} = -18 \text{ mA}, V_{CC} = 0 \text{ V}$  | -1.5 | -0.9  |                        | V    |
| LVDS Input         | Specifications (IN+, IN- pins)                |                                                  |      |       |                        |      |
| V <sub>TH</sub>    | Differential input high threshold             | $V_{ICM} = 0.05V \text{ or } V_{CC} - 0.05V$     |      | 0     | 100                    | mV   |
| V <sub>TL</sub>    | Differential input low threshold              |                                                  | -100 | 0     |                        | mV   |
| V <sub>ID</sub>    | Differential input voltage                    |                                                  | 0.1  | 0.35  | 1                      | V    |
| V <sub>ICMR</sub>  | Input common mode voltage range               | $V_{ID} = 100 \text{ mV}$                        | 0.05 |       | V <sub>cc</sub> - 0.05 | V    |
| I <sub>IN</sub>    | Input current CP22 (Note 3)                   | $V_{cc} = 3.6V$<br>$V_{IN} = 0 \text{ or } 3.6V$ | -10  | +/- 6 | 10                     | μΑ   |
|                    | Input current CP02 (Note 3)                   | $V_{cc} = 3.6V$<br>$V_{IN} = 0 \text{ or } 3.6V$ | -20  | +/_12 | 20                     | μΑ   |
| C <sub>IN</sub>    | Input capacitance                             | IN+ or IN- to GND                                |      | 5     |                        | pF   |
| R <sub>IN</sub>    | Input termination resistor<br>(TF10CP02 only) | Between IN+ and IN-                              |      | 100   |                        | Ω    |

**NOTE1** Current into device pin is defined as positive. Current out of the device is defined as negative. All voltages are referenced to ground, unless otherwise specified. **NOTE2** This specification is not production tested and is guaranteed by design simulations.

**NOTE3** Other input floating or observing the Absolute Maximum Differential input voltage.



#### **Electrical Characteristics (continued)**

Over recommended operating conditions (NOTE1), unless otherwise specified. Typical values are  $V_{cc} = 3.3V$ ,  $T_A = 25$  °C.

| LVDS Outpu                  | ut Specifications (OUT+, OUT- pins)                                               |                                   |      |      |      |    |
|-----------------------------|-----------------------------------------------------------------------------------|-----------------------------------|------|------|------|----|
| V <sub>od</sub>             | Differential output voltage magnitude                                             |                                   | 250  | 370  | 475  | mV |
| $ \Delta V_{od} $           | Change in magnitude of V <sub>oD</sub> for complimentary output states            | See Figure 1<br>$R_L = 100\Omega$ | -35  |      | 35   | mV |
| V <sub>OCM(ss)</sub>        | Steady-state output common mode voltage                                           |                                   | 1.05 | 1.35 | 1.55 | mV |
| $\Delta V_{\text{OCM(SS)}}$ | Change in magnitude of V <sub>OCM(ss)</sub><br>for complimentary output<br>states |                                   | -35  |      | 35   | mV |
| I <sub>os</sub>             | Output short circuit current                                                      | OUT+ or OUT- to GND               |      | -70  | -100 | mA |
|                             |                                                                                   | OUT+ or OUT- to V <sub>cc</sub>   |      | 5    | 10   |    |
| I <sub>OSD</sub>            | Differential output short circuit                                                 | OUT+ and OUT- to GND              |      | -115 | -200 | mA |
|                             | current                                                                           | OUT+ and OUT- to $V_{cc}$         |      | 9    | 20   |    |
| C <sub>OUT</sub>            | Output capacitance                                                                | OUT+ or OUT- to GND               |      | 3.3  |      | pF |
| Power Supp                  | oly Current Specifications                                                        |                                   |      |      |      |    |
| I <sub>cc</sub>             | Power supply current                                                              | OE = 1, S1 = 0, S2 = 1            |      | 50   | 70   | mA |

#### **Switching Characteristics**

Over recommended operating conditions (NOTE1), unless otherwise specified. Typical values are  $V_{cc} = 3.3V$ ,  $T_A = 25$  °C.

| Symbol               | Parameter                            |         | Conditions        | MIN       | ТҮР | МАХ | Unit |
|----------------------|--------------------------------------|---------|-------------------|-----------|-----|-----|------|
| LVDS AC Sp           | ecifications (NOTE2)                 |         |                   |           |     |     |      |
| t <sub>plh</sub>     | Propagation delay, low-to-ł          | nigh    |                   | 300       | 470 | 750 | ps   |
| t <sub>PHL</sub>     | Propagation delay, high-to-          | low     | See Figures 2, 3  | 300       | 470 | 750 | ps   |
| t <sub>r</sub>       | Rise time                            |         | $R_L = 100\Omega$ | 100       | 175 | 400 | ps   |
| t <sub>f</sub>       | Fall time                            |         |                   | 100       | 175 | 400 | ps   |
| t <sub>sK(p)</sub>   | Pulse skew                           | (NOTE3) |                   |           | 10  | 75  | ps   |
| t <sub>SK(c-c)</sub> | Channel-to-channel skew              | (NOTE4) |                   |           | 12  | 100 | ps   |
| t <sub>SK(p-p)</sub> | Part-to-part skew                    | (NOTE5) |                   |           |     | 450 | ps   |
| t <sub>on</sub>      | Propagation delay, OE to O           | n       | Coo Element (     |           | 8.5 | 15  | ns   |
| t <sub>OFF</sub>     | Propagation delay, OE to O           | ff      | See Figures 4     |           | 6.5 | 15  | ns   |
| t <sub>sel</sub>     | Select time                          | (NOTE6) |                   |           | 9   | 20  | ns   |
| _                    |                                      |         | $V_{ID} = 400 mV$ | 622 Mbps  | 20  | 70  | ps   |
| T <sub>DJ</sub>      | Deterministic Jitter<br>Peak-to-Peak |         | $V_{CM} = 1.2V$   | 1.06 Gbps | 20  | 70  | ps   |
|                      |                                      |         | PRBS-7 (NRZ)      | 1.5 Gbps  | 30  | 80  | ps   |

**NOTE1** Current into device pin is defined as positive. Current out of the device is defined as negative. All voltages are referenced to ground, unless otherwise specified. **NOTE2** Specification is guaranteed by characterization and is not tested in production.

**NOTE3**  $t_{SK(b)}$  pulse skew, is the magnitude difference in propagation delay time between the positive going edge and the negative going edge of the same channel  $(t_{SK(b)} = |t_{PLH} - t_{PHL}|)$ .

**NOTE4**  $t_{SK(c-q)}$ , channel-to-channel skew, is the difference in propagation delay time ( $t_{PLH}$  or  $t_{PHL}$ ) between both output channels in broadcast mode on the same device at any operating temperature and supply voltage within the recommended operating range.

**NOTES**  $t_{SK(p,p)}$  part-to-part skew, is defined as the difference between the minimum and maximum differential propagation delay times. It applies to devices operating at the same power supply voltage and within 5°C of each other within the operating temperature range.

**NOTE6** The state of the outputs is not valid for the duration of the  $t_{SEL}$  maximum propagation delay time.



### **Test Circuits and Timing Diagrams**

#### 1.5 Gbps 2x2 LVDS Crosspoint Switches





\* $R_{TERM}$  = 100Ω, not required for TF10CP02

Figure 2. Propagation Delay and Transition Time Test Setup



Figure 3. Propagation Delay and Transition Time Waveforms



1.5 Gbps 2x2 LVDS Crosspoint Switches

### **Test Circuits and Timing Diagrams (continued)**



Figure 4. t  $_{ON}$  / t  $_{OFF}$  Delay Waveforms



1.5 Gbps 2x2 LVDS Crosspoint Switches

### **Typical Performance Characteristics**





#### Package Dimensions (SOIC-16)

1.5 Gbps 2x2 LVDS Crosspoint Switches



- 1. LEAD COPLANARITY SHOULD BE 0 TO 0.10MM (.004") MAX.
- 2. PACKAGE SURFACE FINISHING :
  - (2.1) TOP : MATTE (CHARMILLES #18~30).
- 3. ALL DIMENSIONS EXCLUDING MOLD FLASHES AND END FLASH FROM THE PACKAGE BODY SHALL NOT EXCEED 0.25MM (.010") PER SIDE(D).
- ▲ DETAIL OF PIN #1 IDENTIFIER ARE OPTIONAL BUT MUST BE LOCATED WITHIN THE ZONE INDICATED.



Package Dimensions (TSSOP-16 Please contact support@telekenfunsemi.com for availability)



NOTES:

- 1 ALL DIMENSIONS ARE IN MILLIMETERS (ANGLES IN DEGREES).
- 2 DIMENSIONING AND TOLERANCING PER ASME Y14.5M-1994.
- DIMENSION 'D' DOES NOT INCLUDE MOLD FLASH, PROTRUSIONS OR GATE BURRS. MOLD FLASH, PROTRUSIONS OR GATE BURRS SHALL NOT EXCEED 0.15 PER SIDE.
- DIMENSION 'E1' DOES NOT INCLUDE INTERLEAD FLASH OR PROTRUSION. INTERLEAD FLASH OR PROTRUSION SHALL NOT EXCEED 0.25 PER SIDE.
- DIMENSION 'b' DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE DAMBAR PROTRUSION SHALL BE 0.08 MM TOTAL IN EXCESS OF THE 'b' DIMENSION AT MAXIMUM MATERIAL CONDITION. DAMBAR CANNOT BE LOCATED ON THE LOWER RADIUS OF THE FOOT. MINIMUM SPACE BETWEEN PROTRUSION AND ADJACENT LEAD IS 0.07 MM FOR 0.5 MM PITCH PACKAGES.

6 TERMINAL NUMBERS ARE SHOWN FOR REFERENCE ONLY.

ZATUMS —A— AND —B— TO BE DETERMINED AT DATUM PLANE —H—
 A
 D
 A
 D
 A
 D
 A
 D
 A
 D
 A
 D
 A
 D
 A
 D
 A
 D
 A
 D
 A
 D
 A
 D
 A
 D
 A
 D
 A
 D
 A
 D
 A
 D
 A
 D
 A
 D
 A
 D
 A
 D
 A
 D
 A
 D
 A
 D
 A
 D
 A
 D
 A
 D
 A
 D
 A
 D
 A
 D
 A
 D
 A
 D
 A
 D
 A
 D
 A
 D
 A
 D
 A
 D
 A
 D
 A
 D
 A
 D
 A
 D
 A
 D
 A
 D
 A
 D
 A
 D
 A
 D
 A
 D
 A
 D
 A
 D
 A
 D
 A
 D
 A
 D
 A
 D
 A
 D
 A
 D
 A
 D
 A
 D
 A
 D
 A
 D
 A
 D
 A
 D
 A
 D
 A
 D
 A
 D
 A
 D
 A
 D
 A
 D
 A
 D
 A
 D
 A
 D
 A
 D
 A
 D
 A
 D
 A
 D
 A
 D
 A
 D
 A
 D
 A
 D
 A
 D
 A
 D
 A
 D
 A
 D
 A
 D
 A
 D
 A
 D
 A
 D
 A
 D
 A
 D
 A
 D
 A
 D
 A
 D
 A
 D
 A
 D
 A
 D
 A
 D
 A
 D
 A
 D
 A
 D
 A
 D
 A
 D
 A
 D
 A
 D
 A
 D
 A
 D
 A
 D
 A
 D
 A
 D
 A
 D
 A
 D
 A
 D
 A
 D
 D
 D
 D
 D
 D
 D
 D
 D
 D
 D
 D
 D
 D
 D
 D
 D
 D
 D
 D
 D
 D
 D
 D
 D
 D
 D
 D
 D
 D
 D
 D
 D
 D
 D
 D
 D
 D
 D
 D
 D
 D
 D
 D
 D
 D
 D
 D
 D
 D
 D
 D
 D
 D
 D
 D
 D
 D
 D
 D
 D
 D
 D
 D
 D
 D
 D
 D
 D
 D
 D
 D
 D
 D
 D
 D
 D
 D
 D
 D
 D
 D
 D
 D
 D
 D
 D
 D
 D
 D
 D
 D
 D
 D
 D
 D
 D
 D
 D
 D
 D
 D
 D
 D
 D
 D
 D
 D
 D

8 DIMENSIONS 'D' AND 'E1' ARE TO BE DETERMINED AT DATUM PLANE -H-

THIS DIMENSION APPLIES ONLY TO VARIATIONS WITH AN EVEN NUMBER OF LEADS PER SIDE. FOR VARIATION WITH AN ODD NUMBER OF LEADS PER SIDE, THE "CENTER" LEAD MUST BE COINCIDENT WITH THE PACKAGE CENTERLINE, DATUM A.

 $\frac{1}{10}$  cross section A-A to be determined at 0.10 to 0.25 MM from the LeadTip.

- 11 THIS VARIATION IS NOT REGISTERED WITH JEDEC.
- 12 PACKAGE SURFACE FINISHING:
  - (I) TOP: MATTE (CHARMILLES: #18~30)
  - (II) BOTTOM: MATTE (CHARMILLES: #12~27)

|                 | 0.65m | 0.65mm LEAD PITCH |      |             |  |  |  |
|-----------------|-------|-------------------|------|-------------|--|--|--|
|                 | MIN   | NOM               | MAX  | O<br>T<br>E |  |  |  |
| A               |       |                   | 1.10 |             |  |  |  |
| A1              | 0.05  |                   | 0.15 |             |  |  |  |
| A2              | 0.85  | 0.90              | 0.95 |             |  |  |  |
| L               | 0.50  | 0.60              | 0.75 |             |  |  |  |
| R               | 0.09  |                   |      |             |  |  |  |
| R1              | 0.09  |                   |      |             |  |  |  |
| Ь               | 0.19  |                   | 0.30 | 5           |  |  |  |
| b1              | 0.19  | 0.22              | 0.25 |             |  |  |  |
| C               | 0.09  |                   | 0.20 |             |  |  |  |
| c1              | 0.09  |                   | 0.16 |             |  |  |  |
| -01             | 0"    |                   | 8'   |             |  |  |  |
| L1              |       | 1.0 REF           |      |             |  |  |  |
| aaa             |       | 0.10              |      |             |  |  |  |
| bbb             |       | 0.10              |      |             |  |  |  |
| CCC             |       | 0.05              |      |             |  |  |  |
| ddd             |       | 0.20              |      |             |  |  |  |
| e               | (     | 0.65 BS           | С    |             |  |  |  |
| <del>-0</del> 2 |       | 12" REF           |      |             |  |  |  |
| <del>0</del> 3  |       | 12' REF           |      |             |  |  |  |
| NC              | DTE   | TE 1,2            |      |             |  |  |  |
| D               | 4.90  |                   |      |             |  |  |  |
| E1              | 4.30  | 4.40              | 4.50 |             |  |  |  |
| Ε               |       |                   |      |             |  |  |  |
| е               | 0     |                   |      |             |  |  |  |
| N               |       | 16                |      |             |  |  |  |





1.5 Gbps 2x2 LVDS Crosspoint Switches

#### **Important Notice**

Telefunken Semiconductors PRODUCTS ARE NEITHER DESIGNED NOR INTENDED FOR USE IN MILITARY AND/OR AEROSPACE, AUTOMOTIVE OR MEDICAL DEVICES OR SYSTEMS UNLESS THE SPECIFIC TS PRODUCTS ARE SPECIFICALLY DESIGNATED BY Telefunken Semiconductors FOR SUCH USE. BUYERS ACKNOWLEDGE AND AGREE THAT ANY SUCH USE OF Telefunken Semiconductors PRODUCTS WHICH Telefunken Semiconductors HAS NOT DESIGNATED FOR USE IN MILITARY AND/OR AEROSPACE, AUTOMOTIVE OR MEDICAL DEVICES OR SYSTEMS IS SOLELY AT THE BUYER'S RISK.

Telefunken Semiconductors assumes no liability for application assistance or customer product design. Customers are responsible for their products and applications using Telefunken Semiconductors products.

Resale of Telefunken Semiconductors products or services with statements different from or beyond the parameters stated by Telefunken Semiconductors for that product or service voids all express and any implied warranties for the associated Telefunken Semiconductors product or service. Telefunken Semiconductors is not responsible or liable for any such statements.

©2011 Telefunken Semiconductors. All rights reserved. Information and data in this document are owned by Telefunken Semiconductors and may not be edited, reproduced, or redistributed in any way without written consent from Telefunken Semiconductors.

For additional information please contact support@telefunkensemi.com or visit www.telefunkensemiconductors.com